
Final Exam — Functional Analysis (WBMA033-05)

Friday 4 April 2025, 11.45–13.45h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (10 points)

The linear space C([0, 1],K) can be equipped with the following norms:

‖f‖a =

∫ 1

0

|f(x)| dx and ‖f‖b =

∫ 1

0

x|f(x)| dx.

Are these norms equivalent? Motivate your answer.

Hint: consider the functions fn defined by fn(x) = 1− nx for x ∈ [0, 1/n] and fn(x) = 0
for x ∈ [1/n, 1].

Problem 2 (10 + 10 + 10 = 30 points)

Recall the following Banach space from the lecture notes:

`∞ =

{
x = (x1, x2, x3, . . . ) : xk ∈ K, sup

k∈N
|xk| <∞

}
, ‖x‖∞ = sup

k∈N
|xk|.

Let α ∈ K satisfy |α| < 1 and consider the following linear operator:

T : `∞ → `∞, (x1, x2, x3, . . . ) 7→ (αx1, α
2x2, α

3x3, . . . ).

(a) Compute the operator norm of T .

(b) Prove that T is compact by considering a suitable sequence Tk → T .

(c) Prove that the spectrum of T is given by σ(T ) = {αn : n ∈ N} ∪ {0}.

Problem 3 (10 points)

Let X be a linear space over K = C. Assume that 〈·, ·〉 is an inner product on X and
denote the induced norm by ‖ · ‖. Show that for all x, y ∈ X we have

4〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2.

Hint: first compute λ‖x+ λy‖2 for an arbitrary λ ∈ C.

Turn page for problems 4 and 5!
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Problem 4 (5 + (5 + 5 + 5) = 20 points)

(a) Formulate the Uniform Boundedness Principle.

(b) Consider the following normed linear space of all polynomials:

P =

{
p(x) =

∞∑
k=0

akx
k : ak ∈ K nonzero for only finitely many k

}
,

‖p‖ = max
k≥0
|ak|.

For every n ∈ N consider the following linear map:

Tn : P→ K, Tnp =
n∑

k=0

ak.

Prove the following statements:

(i) For each n ∈ N we have ‖Tn‖ = n+ 1.

Hint: consider the polynomial p(x) = 1 + x+ x2 + · · ·+ xn.

(ii) For each p ∈ P there exists a constant Cp ≥ 0 such that |Tnp| ≤ Cp for all n ∈ N;

(iii) The space (P, ‖ · ‖) is not a Banach space.

Problem 5 (5 + (8 + 7) = 20 points)

(a) Formulate the Hahn-Banach Theorem for normed linear spaces.

(b) Consider the space C([0, 1],K) with the sup-norm. Fix c ∈ [0, 1] and consider the
following linear maps:

f : C([0, 1],K)→ K, f(ϕ) =

∫ 1

0

ϕ(t) dt,

g : C([0, 1],K)→ K, g(ϕ) = ϕ(c).

(i) Show that ‖f‖ = 1 and ‖g‖ = 1.

(ii) Consider the linear subspace V = span {1, x} and the linear map

h : V → K, h(a+ bx) = a+ b/2.

Apply the Hahn-Banach Theorem to h: is the object of which the existence is
asserted by that theorem unique?

End of test (90 points)
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Solution of problem 1 (10 points)

Computing the ‖ · ‖a-norm of fn gives

‖fn‖a =

∫ 1

0

|fn(x)| dx =

∫ 1/n

0

1− nx dx =

[
x− nx2

2

]1/n
0

=
1

2n
.

(3 points)

Computing the ‖ · ‖b-norm of fn gives

‖fn‖b =

∫ 1

0

x|fn(x)| dx =

∫ 1/n

0

x− nx2 dx =

[
x2

2
− nx3

3

]1/n
0

=
1

6n2
.

(3 points)

If the two norms are equivalent, then there exist constants 0 < m ≤M such that

m‖f‖b ≤ ‖f‖a ≤M‖f‖b for all f ∈ C([0, 1],K).

(1 point)

In particular, for the functions fn we obtain the inequality

1

2n
≤ M

6n2
for all n ∈ N,

or, equivalently,

n ≤ M

3
for all n ∈ N.

This would imply that the set of natural numbers is bounded which is clearly a contra-
diction. Therefore, there cannot exist a constant M > 0 such that ‖f‖a ≤ M‖f‖b holds
for all f ∈ C([0, 1],K). We conclude that the two norms are not equivalent.
(3 points)
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Solution of problem 2 (10 + 10 + 10 = 30 points)

(a) Since |α| < 1 it follows that |α|n ≤ |α| for each n ∈ N. Let x ∈ `∞ be arbitrary, then

‖Tx‖∞ = sup
n∈N
|αnxn| = sup

n∈N
|α|n |xn| ≤ |α| sup

n∈N
|xn| = |α| ‖x‖∞.

(5 points)

We conclude that

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖

≤ |α|.

(3 points)

Note that for x = (1, 0, 0, . . . ) we have ‖x‖∞ = 1 and ‖Tx‖∞ = |α| which implies
that the operator norm of T is given by ‖T‖ = |α|.
(2 points)

(b) Define for k ∈ N the operator

Tk : `∞ → `∞, (x1, x2, x3, . . . ) 7→ (αx1, . . . , α
kxk, 0, 0, 0, . . . )

The same argument as in part (a) shows that Tk is bounded (and in fact we have
‖Tk‖ = |α| for all k ∈ N). In addition, ranTk is finite-dimensional. From Lemma 4.44
in the lecture notes it follows that Tk is compact.

(3 points)

For any k ∈ N and x ∈ `∞ we have

‖(T − Tk)x‖∞ = sup
n≥k
|αnxn| = sup

n≥k
|αn| |xn| ≤ |α|k sup

n≥k
|xn| ≤ |α|k‖x‖∞.

(3 points)

We conclude that ‖T − Tk‖ ≤ |α|k for all k ∈ N and thus Tk → T in the space
B(`∞). Since each Tk is compact it follows from Theorem 4.46 (or Corollary 4.47) in
the lecture notes that T is compact as well.
(4 points)

(c) Clearly, αn is an eigenvalue of T for each n ∈ N. The corresponding eigenvector is
given by the n-th standard unit vector. We conclude that {αn : n ∈ N} ⊂ σ(T ).
(2 points)

Note that αn → 0 since |α| < 1. Since the spectrum is closed it follows that 0 ∈ σ(T ).
(1 point)

If λ /∈ {αn : n ∈ N} ∪ {0}, then there exists δ > 0 such that |λ − αn| ≥ δ for all
n ∈ N. Note that the inverse of T − λ is given by

(T − λ)−1x =

(
x1

α− λ
,

x2
α2 − λ

,
x3

α3 − λ
, . . .

)
.

(2 points)

Taking norms gives

‖(T − λ)−1x‖∞ = sup
n∈N

|xn|
|αn − λ|

≤ 1

δ
sup
n∈N
|xn| =

1

δ
‖x‖∞,
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which shows that (T − λ)−1 is bounded and thus λ ∈ ρ(T ).
(2 points)

Hence, we conclude that the spectrum of T is given by σ(T ) = {αn : n ∈ N} ∪ {0}.
(5 points)
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Solution of problem 3 (10 points)

For any x, y ∈ X and λ ∈ C we have

‖x+ λy‖2 = 〈x+ λy, x+ λy〉
= 〈x, x+ λy〉+ 〈λy, x+ λy〉
= 〈x, x〉+ 〈x, λy〉+ 〈λy, x〉+ 〈λy, λy〉
= 〈x, x〉+ λ〈x, y〉+ λ〈y, x〉+ |λ|2〈y, y〉.

(4 points)

Multiplication with λ gives

λ‖x+ λy‖2 = λ〈x, x〉+ |λ|2〈x, y〉+ λ2〈y, x〉+ λ|λ|2〈y, y〉.

(1 point)

In particular, taking λ ∈ {1, i,−1,−i} gives

‖x+ y‖2 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉,
i‖x+ iy‖2 = i〈x, x〉+ 〈x, y〉 − 〈y, x〉+ i〈y, y〉,
−‖x− y‖2 = −〈x, x〉+ 〈x, y〉+ 〈y, x〉 − 〈y, y〉,
−i‖x− iy‖2 = −i〈x, x〉+ 〈x, y〉 − 〈y, x〉 − i〈y, y〉.

(4 points)

Adding the last four equalities gives the desired identity.
(1 point)
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Solution of problem 4 (5 + (5 + 5 + 5) = 25 points)

(a) Let X be a Banach space and let Y be a normed linear space. Let F ⊂ B(X, Y ) and
assume that

sup
T∈F
‖Tx‖ <∞ for all x ∈ X.

Then the elements T ∈ F are uniformly bounded:

sup
T∈F
‖T‖ <∞.

(5 points)

(b) (i) For all p ∈ P we have:

|Tnp| =
∣∣∣∣ n∑
k=0

ak

∣∣∣∣ ≤ n∑
k=0

|ak| ≤ (n+ 1) max
k=0,...,n

|ak| ≤ (n+ 1)‖p‖.

We conclude that

‖Tn‖ = sup
p∈P, p 6=0

|Tnp|
‖p‖

≤ n+ 1.

(4 points)

On the other hand, for the polynomial p(x) = 1+x+ · · ·+xn we obviously have
that ‖p‖ = 1 and

|Tnpn| = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n+1 times

= n+ 1.

Hence, it follows that ‖Tn‖ = n+ 1.
(1 point)

(ii) Take Cp =
∑∞

k=0 |ak|, where the ak are the coefficients of p(x) =
∑∞

k=0 akx
k.

Note that the infinite sum converges since only finitely many ak are nonzero.
For every n ∈ N we have

|Tnp| =
∣∣∣∣ n∑
k=0

ak

∣∣∣∣ ≤ n∑
k=0

|ak| ≤
∞∑
k=0

|ak| = Cp.

(5 points)

(iii) If the space (P, ‖ · ‖) were a Banach space, then an application of the Uniform
Boundedness Principle with the set F = {Tn : n ∈ N} ⊂ B(P,K) gives a
contradiction.

Indeed, for every p ∈ P we have

sup
n∈N
|Tnp| ≤ sup

n∈N
Cp = Cp <∞.

(2 points)

So the Uniform Boundedness Principle would imply that

sup
n∈N
‖Tn‖ <∞.

But this contradicts the fact that ‖Tn‖ = n + 1 for all n ∈ N. Therefore, we
conclude that (P, ‖ · ‖) is not a Banach space.
(3 points)
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Solution of problem 5 (5 + (8 + 7) = 20 points)

(a) Let X be a normed linear space and let V ⊂ X be a linear subspace. If f ∈ V ′, then
there exists F ∈ X ′ such that F (v) = f(v) for all v ∈ V and ‖F‖ = ‖f‖.
(5 points)

(b) For ϕ ∈ C([0, 1],K) we have that

|f(ϕ)| =
∣∣∣∣ ∫ 1

0

ϕ(t) dt

∣∣∣∣ ≤ ∫ 1

0

|ϕ(t)| dt ≤
∫ 1

0

‖ϕ‖∞ dt = ‖ϕ‖∞.

(3 points)

For the constant function ϕ(t) = 1 we have ‖ϕ‖∞ = 1 and |f(ϕ)| = 1. Hence,

‖f‖ = sup
ϕ6=0

|f(ϕ)|
‖ϕ‖∞

= 1.

(1 point)

For ϕ ∈ C([0, 1],K) we have that

|g(ϕ)| = |ϕ(c)| ≤ sup
x∈[0,1]

|ϕ(x)| = ‖ϕ‖∞.

(3 points)

For the constant function ϕ(t) = 1 we have ‖ϕ‖∞ = 1 and |g(ϕ)| = 1. Hence,

‖g‖ = sup
ϕ6=0

|g(ϕ)|
‖ϕ‖∞

= 1.

(1 point)

(c) First observe that with c = 1
2

it follows that f(ϕ) = g(ϕ) = h(ϕ) for all ϕ ∈ V .
(1 point)

In particular, it then follows that

‖h‖ = sup
ϕ∈V \{0}

|h(ϕ)|
‖ϕ‖∞

= sup
ϕ∈V \{0}

|f(ϕ)|
‖ϕ‖∞

≤ sup
ϕ∈C([0,1],K)\{0}

|f(ϕ)|
‖ϕ‖∞

= ‖f‖ = 1.

But note that with ϕ(t) = 1 we have ‖ϕ‖∞ = 1 and |h(ϕ)| = 1, which implies that
‖h‖ = 1.
(4 points)

We conclude that both f and g with c = 1
2

are norm preserving extensions of h. But
note that f 6= g, since for ϕ(t) = t2 we have f(ϕ) = 1

3
whereas g(ϕ) = 1

4
. Therefore,

the norm preserving extension of h obtained by the Hahn-Banach Theorem is not
unique.
(2 points)
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