Final Exam — Functional Analysis (WBMA033-05)

Friday 4 April 2025, 11.45-13.45h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (10 points)

The linear space $\mathcal{C}([0,1],\mathbb{K})$ can be equipped with the following norms:

$$||f||_a = \int_0^1 |f(x)| dx$$
 and $||f||_b = \int_0^1 x|f(x)| dx$.

Are these norms equivalent? Motivate your answer.

Hint: consider the functions f_n defined by $f_n(x) = 1 - nx$ for $x \in [0, 1/n]$ and $f_n(x) = 0$ for $x \in [1/n, 1]$.

Problem 2 (10 + 10 + 10 = 30 points)

Recall the following Banach space from the lecture notes:

$$\ell^{\infty} = \left\{ x = (x_1, x_2, x_3, \dots) : x_k \in \mathbb{K}, \quad \sup_{k \in \mathbb{N}} |x_k| < \infty \right\}, \quad ||x||_{\infty} = \sup_{k \in \mathbb{N}} |x_k|.$$

Let $\alpha \in \mathbb{K}$ satisfy $|\alpha| < 1$ and consider the following linear operator:

$$T: \ell^{\infty} \to \ell^{\infty}, \quad (x_1, x_2, x_3, \dots) \mapsto (\alpha x_1, \alpha^2 x_2, \alpha^3 x_3, \dots).$$

- (a) Compute the operator norm of T.
- (b) Prove that T is compact by considering a suitable sequence $T_k \to T$.
- (c) Prove that the spectrum of T is given by $\sigma(T) = \{\alpha^n : n \in \mathbb{N}\} \cup \{0\}$.

Problem 3 (10 points)

Let X be a linear space over $\mathbb{K} = \mathbb{C}$. Assume that $\langle \cdot, \cdot \rangle$ is an inner product on X and denote the induced norm by $\| \cdot \|$. Show that for all $x, y \in X$ we have

$$4\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2.$$

Hint: first compute $\lambda ||x + \lambda y||^2$ for an arbitrary $\lambda \in \mathbb{C}$.

Turn page for problems 4 and 5!

Problem 4 (5 + (5 + 5 + 5) = 20 points)

- (a) Formulate the Uniform Boundedness Principle.
- (b) Consider the following normed linear space of all polynomials:

$$\mathcal{P} = \left\{ p(x) = \sum_{k=0}^{\infty} a_k x^k : a_k \in \mathbb{K} \text{ nonzero for only finitely many } k \right\},$$
$$\|p\| = \max_{k>0} |a_k|.$$

For every $n \in \mathbb{N}$ consider the following linear map:

$$T_n: \mathcal{P} \to \mathbb{K}, \quad T_n p = \sum_{k=0}^n a_k.$$

Prove the following statements:

- (i) For each $n \in \mathbb{N}$ we have $||T_n|| = n + 1$. Hint: consider the polynomial $p(x) = 1 + x + x^2 + \cdots + x^n$.
- (ii) For each $p \in \mathcal{P}$ there exists a constant $C_p \geq 0$ such that $|T_n p| \leq C_p$ for all $n \in \mathbb{N}$;
- (iii) The space $(\mathcal{P}, \|\cdot\|)$ is *not* a Banach space.

Problem 5 (5 + (8 + 7) = 20 points)

- (a) Formulate the Hahn-Banach Theorem for normed linear spaces.
- (b) Consider the space $\mathcal{C}([0,1],\mathbb{K})$ with the sup-norm. Fix $c\in[0,1]$ and consider the following linear maps:

$$f: \mathcal{C}([0,1], \mathbb{K}) \to \mathbb{K}, \qquad f(\varphi) = \int_0^1 \varphi(t) \, dt,$$
 $g: \mathcal{C}([0,1], \mathbb{K}) \to \mathbb{K}, \qquad g(\varphi) = \varphi(c).$

- (i) Show that ||f|| = 1 and ||g|| = 1.
- (ii) Consider the linear subspace $V = \text{span}\{1, x\}$ and the linear map

$$h: V \to \mathbb{K}, \qquad h(a+bx) = a+b/2.$$

Apply the Hahn-Banach Theorem to h: is the object of which the existence is asserted by that theorem unique?

End of test (90 points)

Solution of problem 1 (10 points)

Computing the $\|\cdot\|_a$ -norm of f_n gives

$$||f_n||_a = \int_0^1 |f_n(x)| \, dx = \int_0^{1/n} 1 - nx \, dx = \left[x - \frac{nx^2}{2}\right]_0^{1/n} = \frac{1}{2n}.$$

(3 points)

Computing the $\|\cdot\|_{b}$ -norm of f_n gives

$$||f_n||_b = \int_0^1 x |f_n(x)| \, dx = \int_0^{1/n} x - nx^2 \, dx = \left[\frac{x^2}{2} - \frac{nx^3}{3}\right]_0^{1/n} = \frac{1}{6n^2}.$$

(3 points)

If the two norms are equivalent, then there exist constants $0 < m \le M$ such that

$$m||f||_b \le ||f||_a \le M||f||_b$$
 for all $f \in \mathcal{C}([0,1], \mathbb{K})$.

(1 point)

In particular, for the functions f_n we obtain the inequality

$$\frac{1}{2n} \le \frac{M}{6n^2} \quad \text{for all} \quad n \in \mathbb{N},$$

or, equivalently,

$$n \leq \frac{M}{3}$$
 for all $n \in \mathbb{N}$.

This would imply that the set of natural numbers is bounded which is clearly a contradiction. Therefore, there cannot exist a constant M > 0 such that $||f||_a \leq M||f||_b$ holds for all $f \in \mathcal{C}([0,1],\mathbb{K})$. We conclude that the two norms are not equivalent.

(3 points)

Solution of problem 2 (10 + 10 + 10 = 30 points)

(a) Since $|\alpha| < 1$ it follows that $|\alpha|^n \leq |\alpha|$ for each $n \in \mathbb{N}$. Let $x \in \ell^{\infty}$ be arbitrary, then

$$||Tx||_{\infty} = \sup_{n \in \mathbb{N}} |\alpha^n x_n| = \sup_{n \in \mathbb{N}} |\alpha|^n |x_n| \le |\alpha| \sup_{n \in \mathbb{N}} |x_n| = |\alpha| ||x||_{\infty}.$$

(5 points)

We conclude that

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} \le |\alpha|.$$

(3 points)

Note that for x = (1, 0, 0, ...) we have $||x||_{\infty} = 1$ and $||Tx||_{\infty} = |\alpha|$ which implies that the operator norm of T is given by $||T|| = |\alpha|$.

(2 points)

(b) Define for $k \in \mathbb{N}$ the operator

$$T_k: \ell^{\infty} \to \ell^{\infty}, \quad (x_1, x_2, x_3, \dots) \mapsto (\alpha x_1, \dots, \alpha^k x_k, 0, 0, 0, \dots)$$

The same argument as in part (a) shows that T_k is bounded (and in fact we have $||T_k|| = |\alpha|$ for all $k \in \mathbb{N}$). In addition, ran T_k is finite-dimensional. From Lemma 4.44 in the lecture notes it follows that T_k is compact.

(3 points)

For any $k \in \mathbb{N}$ and $x \in \ell^{\infty}$ we have

$$||(T - T_k)x||_{\infty} = \sup_{n \ge k} |\alpha^n x_n| = \sup_{n \ge k} |\alpha^n| |x_n| \le |\alpha|^k \sup_{n \ge k} |x_n| \le |\alpha|^k ||x||_{\infty}.$$

(3 points)

We conclude that $||T - T_k|| \leq |\alpha|^k$ for all $k \in \mathbb{N}$ and thus $T_k \to T$ in the space $B(\ell^{\infty})$. Since each T_k is compact it follows from Theorem 4.46 (or Corollary 4.47) in the lecture notes that T is compact as well.

(4 points)

(c) Clearly, α^n is an eigenvalue of T for each $n \in \mathbb{N}$. The corresponding eigenvector is given by the n-th standard unit vector. We conclude that $\{\alpha^n : n \in \mathbb{N}\} \subset \sigma(T)$.

(2 points)

Note that $\alpha^n \to 0$ since $|\alpha| < 1$. Since the spectrum is closed it follows that $0 \in \sigma(T)$. (1 point)

If $\lambda \notin \{\alpha^n : n \in \mathbb{N}\} \cup \{0\}$, then there exists $\delta > 0$ such that $|\lambda - \alpha^n| \geq \delta$ for all $n \in \mathbb{N}$. Note that the inverse of $T - \lambda$ is given by

$$(T-\lambda)^{-1}x = \left(\frac{x_1}{\alpha-\lambda}, \frac{x_2}{\alpha^2-\lambda}, \frac{x_3}{\alpha^3-\lambda}, \dots\right).$$

(2 points)

Taking norms gives

$$||(T - \lambda)^{-1}x||_{\infty} = \sup_{n \in \mathbb{N}} \frac{|x_n|}{|\alpha^n - \lambda|} \le \frac{1}{\delta} \sup_{n \in \mathbb{N}} |x_n| = \frac{1}{\delta} ||x||_{\infty},$$

$$- \text{Page 4 of 8} -$$

which shows that $(T - \lambda)^{-1}$ is bounded and thus $\lambda \in \rho(T)$. (2 points)

Hence, we conclude that the spectrum of T is given by $\sigma(T) = \{\alpha^n : n \in \mathbb{N}\} \cup \{0\}$. (5 points)

Solution of problem 3 (10 points)

For any $x, y \in X$ and $\lambda \in \mathbb{C}$ we have

$$||x + \lambda y||^2 = \langle x + \lambda y, x + \lambda y \rangle$$

$$= \langle x, x + \lambda y \rangle + \langle \lambda y, x + \lambda y \rangle$$

$$= \langle x, x \rangle + \langle x, \lambda y \rangle + \langle \lambda y, x \rangle + \langle \lambda y, \lambda y \rangle$$

$$= \langle x, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \langle y, x \rangle + |\lambda|^2 \langle y, y \rangle.$$

(4 points)

Multiplication with λ gives

$$\lambda ||x + \lambda y||^2 = \lambda \langle x, x \rangle + |\lambda|^2 \langle x, y \rangle + \lambda^2 \langle y, x \rangle + \lambda |\lambda|^2 \langle y, y \rangle.$$

(1 point)

In particular, taking $\lambda \in \{1, i, -1, -i\}$ gives

$$\begin{aligned} \|x+y\|^2 &= \langle x,x\rangle + \langle x,y\rangle + \langle y,x\rangle + \langle y,y\rangle, \\ i\|x+iy\|^2 &= i\langle x,x\rangle + \langle x,y\rangle - \langle y,x\rangle + i\langle y,y\rangle, \\ -\|x-y\|^2 &= -\langle x,x\rangle + \langle x,y\rangle + \langle y,x\rangle - \langle y,y\rangle, \\ -i\|x-iy\|^2 &= -i\langle x,x\rangle + \langle x,y\rangle - \langle y,x\rangle - i\langle y,y\rangle. \end{aligned}$$

(4 points)

Adding the last four equalities gives the desired identity. (1 point)

Solution of problem 4 (5 + (5 + 5 + 5) = 25 points)

(a) Let X be a Banach space and let Y be a normed linear space. Let $F \subset B(X,Y)$ and assume that

$$\sup_{T \in F} \|Tx\| < \infty \quad \text{for all} \quad x \in X.$$

Then the elements $T \in F$ are uniformly bounded:

$$\sup_{T \in F} \|T\| < \infty.$$

(5 points)

(b) (i) For all $p \in \mathcal{P}$ we have:

$$|T_n p| = \left| \sum_{k=0}^n a_k \right| \le \sum_{k=0}^n |a_k| \le (n+1) \max_{k=0,\dots,n} |a_k| \le (n+1) ||p||.$$

We conclude that

$$||T_n|| = \sup_{p \in \mathcal{P}, p \neq 0} \frac{|T_n p|}{||p||} \le n + 1.$$

(4 points)

On the other hand, for the polynomial $p(x) = 1 + x + \cdots + x^n$ we obviously have that ||p|| = 1 and

$$|T_n p_n| = \underbrace{1 + 1 + \dots + 1}_{n+1 \text{ times}} = n+1.$$

Hence, it follows that $||T_n|| = n + 1$.

(1 point)

(ii) Take $C_p = \sum_{k=0}^{\infty} |a_k|$, where the a_k are the coefficients of $p(x) = \sum_{k=0}^{\infty} a_k x^k$. Note that the infinite sum converges since only finitely many a_k are nonzero. For every $n \in \mathbb{N}$ we have

$$|T_n p| = \left| \sum_{k=0}^n a_k \right| \le \sum_{k=0}^n |a_k| \le \sum_{k=0}^\infty |a_k| = C_p.$$

(5 points)

(iii) If the space $(\mathcal{P}, \|\cdot\|)$ were a Banach space, then an application of the Uniform Boundedness Principle with the set $F = \{T_n : n \in \mathbb{N}\} \subset B(\mathcal{P}, \mathbb{K})$ gives a contradiction.

Indeed, for every $p \in \mathcal{P}$ we have

$$\sup_{n\in\mathbb{N}} |T_n p| \le \sup_{n\in\mathbb{N}} C_p = C_p < \infty.$$

(2 points)

So the Uniform Boundedness Principle would imply that

$$\sup_{n\in\mathbb{N}}\|T_n\|<\infty.$$

But this contradicts the fact that $||T_n|| = n + 1$ for all $n \in \mathbb{N}$. Therefore, we conclude that $(\mathcal{P}, ||\cdot||)$ is *not* a Banach space.

(3 points)

Solution of problem 5 (5 + (8 + 7) = 20 points)

- (a) Let X be a normed linear space and let $V \subset X$ be a linear subspace. If $f \in V'$, then there exists $F \in X'$ such that F(v) = f(v) for all $v \in V$ and ||F|| = ||f||. (5 points)
- (b) For $\varphi \in \mathcal{C}([0,1],\mathbb{K})$ we have that

$$|f(\varphi)| = \left| \int_0^1 \varphi(t) \, dt \right| \le \int_0^1 |\varphi(t)| \, dt \le \int_0^1 ||\varphi||_{\infty} \, dt = ||\varphi||_{\infty}.$$

(3 points)

For the constant function $\varphi(t) = 1$ we have $\|\varphi\|_{\infty} = 1$ and $|f(\varphi)| = 1$. Hence,

$$||f|| = \sup_{\varphi \neq 0} \frac{|f(\varphi)|}{||\varphi||_{\infty}} = 1.$$

(1 point)

For $\varphi \in \mathcal{C}([0,1],\mathbb{K})$ we have that

$$|g(\varphi)| = |\varphi(c)| \le \sup_{x \in [0,1]} |\varphi(x)| = ||\varphi||_{\infty}.$$

(3 points)

For the constant function $\varphi(t) = 1$ we have $\|\varphi\|_{\infty} = 1$ and $|g(\varphi)| = 1$. Hence,

$$||g|| = \sup_{\varphi \neq 0} \frac{|g(\varphi)|}{||\varphi||_{\infty}} = 1.$$

(1 point)

(c) First observe that with $c = \frac{1}{2}$ it follows that $f(\varphi) = g(\varphi) = h(\varphi)$ for all $\varphi \in V$. (1 point)

In particular, it then follows that

$$||h|| = \sup_{\varphi \in V \setminus \{0\}} \frac{|h(\varphi)|}{||\varphi||_{\infty}} = \sup_{\varphi \in V \setminus \{0\}} \frac{|f(\varphi)|}{||\varphi||_{\infty}} \le \sup_{\varphi \in \mathcal{C}([0,1],\mathbb{K}) \setminus \{0\}} \frac{|f(\varphi)|}{||\varphi||_{\infty}} = ||f|| = 1.$$

But note that with $\varphi(t) = 1$ we have $\|\varphi\|_{\infty} = 1$ and $|h(\varphi)| = 1$, which implies that $\|h\| = 1$.

(4 points)

We conclude that both f and g with $c=\frac{1}{2}$ are norm preserving extensions of h. But note that $f\neq g$, since for $\varphi(t)=t^2$ we have $f(\varphi)=\frac{1}{3}$ whereas $g(\varphi)=\frac{1}{4}$. Therefore, the norm preserving extension of h obtained by the Hahn-Banach Theorem is not unique.

(2 points)